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DEDICATED TO THE MEMORY OF d7.A FREUD

l.'pper and lower bounds arc found for the generalized ChristofTel functions
J.n.rld/J; x) (0 < P < Cfj) of Freud-type weights. These weights have the form

"',(x) - !xl'exp( --Q(x)) (XC:<, r> --1)

with a singularity at the origin and non-compact support. The prollf requires an
inequality reducing weighted integrals of polynomials over ~ to integrals over com-
pact inten·'als. .r. 19X6 Academic Press. 1nc

I. rl\;TROO\,;CnO"J

Geza Freud initiated investigations into the polynomials orthogonal with
respect to W(x)=exp{ -Q(x)} with Q(x) chosen as x~k/2k [2,4-7].
Nevai [15, 17] and Sheen [19. 20] have successfully handled the cases
k = 2 and k = 3, respectively, where, as in much of Freud's work, estimates
of the ChristolTei functions gave crucial information needed in bounding
the orthogonal polynomials. Freud also used the bounds to find weighted
Markov-Bernstein-type inequalities [3] when Q is a Freud exponent (see
(2.1 )), Recently Lubinsky [9J, Mhaskar and SalT [14J, and Zalik [22]
have investigated similar weighted inequalities: further, Lubinski [10] and
Mhaskar and SalT [13] have bounded the generalized ChristolTei functions
for a widcr class of smooth weights. Both the bounds of the Christoffel
functions and the weighted inequalities are used in !'v1agnus' proof [II, 12J
of the Freud conjecture [4].

*This material is based upon research suppc.rted, in part, by :he ~ational Science Foun­
dation under Grant MCS-83-00S82 and is a portion of the author's Ph,D. dissertation written
ur:der the supervision of P, Nevai.
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In this paper we will investigate the Christoffel functions of Freud-type
weights that have a singularity at the origin, that is, weights of the form

Wr(X)= Ixlrexp( -Q(x)) (-00 <x< +00, r> -1),

with Q(x) being a Freud exponent. We intend to use the estimates given
below to find the asymptotics of orthogonal polynomials associated with
these generalized Freud-type weights.

The organization of the paper is as follows: In Section II we define our
notation; Section III contains the statements of the main results; Section IV
is the proof of the integral inequality; Section V contains the derivation of
the bounds; and, lastly, Section VI relates qn (see (2.3)) to the largest zero
and to the ratios of leading coefficients of the orthogonal polynomials
associated with these weights.

II. NOTATION

The following notations will be observed throughout. Q(x) will be cailed
a "Freud exponent" when Q is an even function and satisfies:

(i) Q'(t) >0, Q"(t)~O for tE(O, (0),

(ii) Q"(t) is continuous on IR,

(iii) Q'(2t)/Q'(t) > co> 1 for t E (0, CXl),

(iv) tQ"(t)IQ'(t)~c for tE(O, (0).

(2.1 )

The weight function, wr(x), will then be wAx)= Ixl'exp{ -Q(x)}. The
polynomials orthonormal with respect to Wr are Pn(wr;x)=rnxn+ ... ,
denote the greatest zero of Pn(x) by Xln(W r ) and let

(2.2)

For n suitably large let qn be defined by the equation

(2.3)

By lPn, denote the set of all polynomials with real coefficients of degree at
most n. The generalized Christoffel functions of the distribution dJ1. are (see
Nevai [16], where they were first introduced)



ESTIMATES OF CHRISTOFFEL FUNCTIONS 219

We note that, for the special case p = 2, the following identity IS wen
known (e.g., Freud [8, Theorem 1.4.1]:

An•2( dl1; x) = ["f p~(df1; X)J -1
k=O

Denote by C l 'C b ... positive constants independent of x or n.

III. THE MAIN RESULTS

The first result is the main tool with which the bounds were obtained.

THEOREM 3.1. Let Q(x) be a Freud exponent and q" be as defined in
(2.3), then for a fixed 8 > 0, and p, r such that () ~ p ~ 00 and pr > -1, there
exist constants p=p(8)E(O, 1), c=c(e, r), and B>O so that for all n>no,

Iln(x) wr(x)IILp(Ol) ~ (1 +cp")1/81In(x) wr(x)!1 Lp(-Bqn. + Bqn)

where n(x) E P'l1"

Remark. The above inequality can be significantly sharpened using the
techniques of Potential Theory (e.g., see Mhaskar and Saff [14J). We have
chosen the methods used for simplicity of exposition since they do produce
results sharp enough for the purposes of the following theorems. We also
note that using q"~ q"0 for n < no and standard compactness arguments we
can extend the inequality to n = 1, 2,....

With this "Infinite to Finite Range" inequality in hand we can proceed to
the main results, upper and lower bounds of the generalized Christoffel
functions; Nevai [18J was the first to use the method of reducing weights
over the real line to compact intervals in order to estimate the Christoffel
functions.

THEOREM 3.2. Let Q(x) be a Freud exponent with qn as defined in (2.3),
let O<p<oo andpr> -1, then, for wr(x)=lxlrexp(-Q(x)),for every c,
0< E< 1, there is a constant A = A (E), independent of x and n, such that

where B is the constant of Theorem 3.1.

THEOREM 3.3. Let Q(x) be a Freud exponent with qn as defined in (2.3),
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let O<p<oo and pr> -1, then, for wAx)=lxlrexp(-Q(x)), there is a
8 > 0 and constant A', independent of x and n, such that

(Ixl ~8qn).

We immediately obtain the following

COROLLARY 3.4. Under the conditions of Theorems 3.2 and 3.3

(lxl ~ 8qn)·

Remark. We note that from the definition of Freud exponent, (ii) Q"
continuous is used for the lower bound but not for the upper bound while
(iii) Q'(2t)/Q'(t) > Co is used for the upper bound and not the lower.

The relation of qn to the polynomials p n(wr; x) (see Freud [5 J) is seen in

THEOREM 3.5. Let Q(x) be a Freud exponent with qn as defined in (2.3)
and let r> -1; define wr(x) = Ixl r exp{ -Q(x)}. Let x1n(wr) be the greatest
zero ofPn(wr; x) and let an(wr) be defined by (2.2). Then we have

and

IV. PROOF OF THE "INFINITE TO FINITE RANGE" INEQUALITY

Following the method of Lubinsky [10J we use Cartan's Lemma for the

Proof (Theorem 3.1). If n(x) 0:=0 the inequality is trivial. Let nElPn,
n > no, we can express

m

n(x) = c TI (x - x;);
i=l

Let qn be defined by (2.3). Determine j ~ 0 such that for 1~ i ~ j,
Ixil ~ 3q2n/2 and for j < i ~ m, Ixil > 3q2n/2. If Ixl > Bq2n, lui ~ Q2n' and
j< i~m, then

1.e.,

(4.1)

If Ixl > Bq2n, lui ~ q2n' and 1 < i ~ j, then

Ix - xil/lu - xii ~ (Ixl + (3/2) q2n)flu - xii ~ 2lxl/lu - xJ (4.2)
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Putting (4.1) and (4.2) together yields

j m

In(x)/n(u)1 ~ n (2Ixl/lu-x i l) TI (Slxl/Q2n)

221

i=1 i=j+l

We shall now apply Cartan's lemma (see, e.g., Baker [1, p. 174]) to
{Il{=1 IU -X i l} to obtain

for Ixl ~ Bq2n, lui ~ Q2n, and u¢:? c IR, where:? is a set which can be
covered by intervals, the sum of whose lengths is at most q2n/8. Let .Jt =
(-Q2n,+q2n)\:?, then.Jt has Lebesgue measure at least (15/8)q2n' So for
U E.Jt, Ixl ~ Bq2n,

In(x) wr(x )I/In(u) wr(u)1 ~ sm[48lxl/Q2nrwr(x )/W,(u).

Let c j =min{l, (3/8)'} and uE.Jt*=.Jt\(-(3/8)q2n, +(3/8)Q2n), then

In(x) wr(x)I/ln(u) wr(u)1 ~ sm[48Ixl/Q2nJ"'W,(X)/[WO(Q2n) cjq;n]

~ [2 8n/C 1] [Q2Jlx[ r -Tlxl 2nwo(x )/(q~~WO(q2n»)].

But, by the maximality of q~~WO(Q2n), we have

i.e., for Ixl ~ Bq2n, and U E .Jt*,

Therefore

or
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Whence
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f In(x) wAx)IP dx ~ 28pn + 1B-(n-r)p+ ICjP[p(n - r) -1 J- 1

Ixl ;, Bq2n

Thus for B suitably large and n > no

i In(x) wr(x)IPdx,,;A[p7/cl]P[pnJ- 1 f- q2n
In(u) wr(u)IPdu.

Ixl ;, Bq2n - q2n

Now

thus

f In(x) wAx)IPdx"; [1 + (ctI(pn)) pnJ i In(x) wAxWdx.
IR Ixl ,,; Bq2n

So we have

Iln(x) wr(x)IILp(IR)"; [1 + (ctl(pn)) pnJIIPlln(x) wr(x)11 Lp(-Bqn, +Bqn)

choosing B possibly larger, since qZn < 2qn (Freud [3, p.22J). Fix 8> 0
then for 0 < 8,,; p < 00

Iln(x) wr(x)IILp(IR)"; [1 + (ctl(8n)) pnJ 1IB
ll n(x) w,.(x)11 Lp(-Bqn, +Bqn)'

By the continuity of 1/'11 L norms and the independence of the constants
p

upon p, the limit as p ~ 00 may be taken and the inequality holds for
0< 8,,; p,,; 00. I

V. PROOFS OF THE UPPER AND LOWER BOUNDS

OF THE CHRISTOFFEL FUNCTIONS

First, we shall require a technical lemma

(3/4) exp(x) ,,; Rn(x) ,,; (5/4) exp(x) (Ixl ,,; n/5, n ?:-12).
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Proof From Taylor's theorem, we have, for ix! :os; en,

lexp(x)- R,Jx)1 :os; (n!) 1 max {exp(x)jx!"} :os; (n!) 'exp(cn)(cn)".
lx' ~ en

Applying Stirling's approximation gives

lexp(x)- R,,(x)1 :os; exp((c + I) n) e",

in particular, for c = 1/5,

Il-exp( -x)R,,(xl::OS;(8'9)". I

We shall now construct the polynomials that will he used to
approximate H·o(.d (as in Freud [3 J).

LEM\1A 5.2. LeI Q(x) he a Freud exponent. q" he defined hy (2.3), and
fix x E l\;. There exists a polynomial 5,,(x; t) such Ihal

(i) 5,,(t) E ~) 7k,,( I) for each fixed x and some inleger k = k( Q, B),

(ii) S,,(x; x) = 11"0(x),

(iii) O<S,,(t):OS;(5,4)wo(/) for l/l:os;Bq",

where 8 is the cOllstant of Theorem 3.1.

Proof Let V)t)=Q'(X)(/'-X)+ [con/(2q~)](t _X)2 for IEIR. Define

(iti :os; Bq,,).

then (i) and (ii) follow directly. Now to prove (iii): For It; :os; Bq"

I V,,(t):os; iQ'(x)! 2Bq" + [con/(2q;;)] 4B2q,;

:os; cIIQ'(q,,)1 2Bq" + 2B2('on:OS; 28[e l + Be o] 11.

Therefore, if k is a large enough positive integer, so that k/5):
2B[ c I + Co B], then, by Lemma 5.1,

(!/! :os; Bq,,):

so that

and hence

S,,(/) woo I (I) ~exp{Q(t) - Q(x) - Q'(X)(I - x)·- rcufl/2q2)]{t ._' X)2 }.
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Since QJI is continuous, Q(t)=Q(x)+Q'(x)(t-x)+Q"(O(t-x)2/2 for
some ~ between t and x, but, since Q is a Freud exponent,
IQ"(OI ~conlq~, and thus (iii) holds. I

We are now in a position to determine the lower bound.

Proof (Theorem 3.2). Let p > 0, fix r such that pr > -1, and let n> 12.
Then

An,p(W~; x) = inf f In(tWw~(t) dtl[n(x)]p
1tE IPn-J IR

~ inf f- Bqn

In(tWwf(t) dtl[n(x)]p
1CE IFDn-l +Bqn

f
+!

~ C2wg(x) q~/+ 1 inf [R(tBqnWI W"dtl[R(x)]P
REUJ>k'n_l -1

so that

Using Nevai [16, Theorem 6.3.25] we have, for Ixl ~f.Bqn (O<f.< 1),

Now we shall construct the polynomials to estimate wo(x) for the upper
bound.

LEMMA 5.3. Let x E IR be fixed and let n> 12. Then there exists a
polynomial Sn(x; t) and J> 0 such that for Ixl ~ oqn and It I~ Bq,p

(i) Sn(t) E lP[n/2](t),

(ii) Sn(x;x)=wo!(x),

(iii) 0< Sn(t) wo(t) ~5/4.

where B is the constant of Theorem 3.1 and qn is defined by (2.3).

Proof Define Sn(x; t) = wo!(x) Rm(Q'(x)(t -x)) where m = [nI2] and
Rm is defined in Lemma 5.1, then (i) and (ii) follow immediately. For
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Ixl~aqn and Itl~Bqn, we have It-xl~(B+o)qn; now, since Q' 1S

increasing

Since Q is a Freud exponent

[Q'(oqn)/Q'(qn)J ~ [Q'(qn2 -k)/Q'(qn}] ~ cok.

Thus we can take 0> 0 so small that

IQ'(x)(t - x)1 ~ cokn(B + 0) ~ nj20 ~mj5,

therefore, by Lemma 5.1 and the convexity of Q,

Sn(t) ~ cwo I(X) exp {(Q'(x)(t - x)} ~ c exp{Q(t)} = cwo I(t). I

Let us proceed to the

Proof (Theorem 3.3). As before let p> 0, fix r such that pr> -1, and
let n> 12. Then

Artjw~; x) = inf J' In(t)[pw~(t) dtj[n(x)]P
lfE1jJ'n_l R.

which, applying Lemma 5.3, is

j+Bqn

~ C2 wg(x) inf IR(tWIW'dt/[R(x)]P.
R E P[n!2] - Bqn

We apply the same change of variables as in the derivation of the lower
bound to obtain

f
+!

~ C3 wg(x) q~'+ I inf IR*(u)i PluIP'duj[R*(xjBqn)]P
R* E l?[n,l2] -1

so that

Once more using Nevai [16, Theorem 6.3.25J we have, for Ixl ~ oBqn,
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VI. CONNECTIONS TO THE ORTHONORMAL POLYNOMIALS Pn(Wr ; X)

While Freud originally used the property that q~~Q'(q2n) maximized
xQ'(x), there are other significant relations concerning qn'

LEMMA 6.1. Let x In(Wr) denote the greatest zero of the orthonormal
polynomial, Pn(wr; x), and qn be defined by (2.3); then

limsup Xln(Wr)jqn ~ const.
n~ CD

Proof From a well-known result of Chebyshev (see, e.g., Szego [21,
p. 187J) we have

x1n(wr) = max [J xn2(x) wr(x) dxjJ n2(x) wr(x) dxJ.
rrEITJ'n IR IR

According to Theorem 3.1

or

and the result is seen to hold. I

LEMMA 6.2. Let r > -1. Then

Yn(Wr)/Yn_l(Wr) = (n + rLln)-1 fCD Pn(x) Pn-l(X) Q'(x) wr(x) dx;
- 00

Remark. For Q(x) = IxIP Lemma 6.2 was proven for r~ 0 and f3 > 0 in
Freud [6J and for r> -1 and f3~ 1 in Nevai [18].

Proof First integrate directly

Joo Pn(x) Pn-l(X) wAx) dx = Joo (nYnxn-1 + .,. ) Pn-l(X) wAx) dx
-00 -00

= foo (n(ynlYn-l) Pn_l(x)+nn_ix)) Pn_l(X) wr(x) dx=n(Yn/Yn_l)
-CX!

(6.1 )

where nn _ 2(X) E IP'n_ 2' the last equality holding by virtue of orthogonality.
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Now integrate by parts

= f" Pn(x) Pn-l(X) Q'(X) Wr(X) dx
-co

227

-r fco Pn(X) Pn-l(X) X-1Wr(X) dx. (6.2)
- co

Since wr(x) is an even weight, Pn IS an even/odd polynomial as n IS

even/odd, resp., therefore

fCO pAx) Pn-l(X) x-1wr(x) dx= (Ynlrn-l) LIn-
-co

Combining (6.1) and (6.2), the result follows. I

where A is an absolute constant.

Proof From Lemma 6.2 we have

Yn(Wr)/Yn-l(Wr)= (n + rLln)-1 fco Pn(x) Pn-l(X) Q'(x) wAx) dx.
-co

Since Q is a Freud exponent, for x> 0

Q'(x) = Q'(qn) exp{log(Q'(x)) -log(Q'(qn))}

Q'(qn) exp {r (Q"(t)/Q'(t)) dt}

~ Q'(qn) exp {J:. (c/t) dt} = Q'(qn)lx/qnI C

with c being the constant of (2.1 )(iv), whereupon

640/46/3-2
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We now apply Theorem 3.1 to obtain

so that

I.e.,

The last equality follows from the definition of qn- I
Proof (Theorem 3.5). The inequality

constqn_l:::;;an_l:::;; max aj :::;;x ln :::;;2 max aj :::;;2x 1n :::;;constqn
l~j~n-l l~j~n-l

follows from (Freud [6, Theorem 1])

max aj :::;; x ln :::;; 2 max aj
l~j~n-l l~j~n-l

and Lemmas 6.1 and 6.3. Since qn is an increasing function of nand
1 < q2n/qn < 2 (Freud [3, p. 22]) the Theorem holds.

Remark. When Q is an even polynomial of degree 2m then qn~nl/2m

and given that An(wr)=an(wr)/(nl/2m) has a limit, it is an easy calculation
to find the value. Following the method of Freud [4] we integrate
Jp~(x) Pn-l(X) wAx) dx in two ways (as in Lemma 6.2) and we arrive at
the recurrence relation for an(W r)

where Q(x) = L d2k X
2k

; now, noting that the "order" of each of the
integrals is ~ C2k _ l.k a~k - 1 (C i.j being the binominal coefficient), we find

lim an(wr)j(nl/2m) = (2m d2mC2m_l,m)-1/2m
n~ 00

which is consistent with the Freud conjecture [4] (recently proven by A.
Magnus [11] for the case Q(x)=x2m, also see Magnus [12J, where
Freud's conjecture was discussed for Q(x)= Ixl r

, r> 1).
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