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DEDICATED TO THE MEMORY OF GEZA FREUD

Upper and lower bounds arc found for the gencralized Christoffel functions
Aasldu; x) (0 < p <o) of Freud-type weights. These weights have the form

w,(x) - Ixexp( - Qfx)) (xeX, r> -1

with a singularity at the orgin and non-compact support. The proof requires an
inequality reducing weighted integrals of polynomials over R to integrals over com-
pact intervals. €, 1986 Academic Press, Inc.

I. INTRODUCTION

Géza Freud inttiated mvestigations into the polynomials orthogonal with
respect to W{(x)=ecxp{—Q(x)} with Q(x) chosen as x™/2k [2,4-7].
Nevai [15,17] and Sheen [19.20] have successfully handled the cases
k=2 and k =3, respectively, where, as in much of Freud's work, estimates
of the Christoffel functions gave crucial information needed in bounding
the orthogonal polynomials. Freud also used the bounds to find weighted
Markov-Bernstein-type inequalitics [3] when Q is 2 Freud exponent (sec
{2.1)). Recently Lubinsky [9], Mhaskar and Saff [14], and Zahk [22]
have investigated similar weighted incqualities: further, Lubinski [10] and
Mhaskar and Saff [13] have bounded the gencralized Christoffel functions
for a wider class of smooth weights. Both the bounds of the Christoffel
functions and the weighted incqualities are used in Magnus’ proof [11, 127
of the Freud conjecture [4].

*This material is based upon rescarch supported, in part, by the National Science Foun-
dation under Grant MCS-83-00882 and is a portion of the author’s Ph.DD. dissertation written
ur.der the supervision of P. Nevai.
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In this paper we will investigate the Christoffel functions of Freud-type
weights that have a singularity at the origin, that is, weights of the form

w,(x) = |x|"exp(—Q(x)) (—oo<x< 400, r>—1),

with Q(x) being a Freud exponent. We intend to use the estimates given
below to find the asymptotics of orthogonal polynomials associated with
these generalized Freud-type weights.

The organization of the paper is as follows: In Section IT we define our
notation; Section III contains the statements of the main results; Section IV
is the proof of the integral inequality; Section V contains the derivation of
the bounds; and, lastly, Section VI relates g, (see (2.3}) to the largest zero
and to the ratios of leading coefficients of the orthogonal polynomials
associated with these weights.

II. NOTATION

The following notations will be observed throughout. Q(x) will be cailed
a “Freud exponent” when Q is an even function and satisfies:

(i) Q(1)>0,0Q"(+)=0 for te(0, w),
(i) Q"(z) is continuous on R,
(iii) Q'(2¢)/Q'(t)>ce>1 for 1€ (0, w),
(iv) 1Q"(2)/Q'(#)<cfor te (0, w).

2.1

The weight function, w,(x), will then be w,(x)=|x|"exp{—0(x)}. The
polynomials orthonormal with respect to w, are p,(w,; x)=7v,x"+ -,
denote the greatest zero of p,(x) by x,,(w,) and let

an(wr)zlynfl(wr)/'))n(wr)‘ (22)

For »n suitably large let ¢, be defined by the equation

anl(qn) =hn (I’l>n0). (23)

By P,, denote the set of all polynomials with real coefficients of degree at
most n. The generalized Christoffel functions of the distribution du are (see
Nevai [16], where they were first introduced)

hngtdis )= ot | [ a1 au(oincol? |

neEPy g
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We note that, for the special case p=2, the following identity is well
known (e.g., Freud [8, Theorem 1.4.17:

7 —

1 —t
Aot X):[ Y, pildy; x}} :

k=0

Denote by ¢,,c,,... positive constants independent of x or n.

1. THE MAIN RESULTS
The first result is the main tool! with which the bounds were obtained.

TueoreM 3.1. Let Q(x) be a Freud exponent and q, be as defined in
(2.3), then for a fixed 6 >0, and p, r such that 8 < p < 0 and pr> —1, there
exist constants p=p(0)e (0, 1), c=c(0, r), and B> 0 so that for all n>n,,

l(x) w{x) LA®) <(1+ cn")l/glln(x} wAx)| Lp(~ Bgn, + By}
where n(x}eP,,.

Remark. The above inequality can be significantly sharpened using the
technigues of Potential Theory (e.g., see Mhaskar and Saff [14}). We have
chosen the methods used for simplicity of exposition since they do produce
results sharp enough for the purposes of the following theorems. We also
note that using ¢,~¢,, for n <n, and standard compactness arguments we
can extend the inequality to n=1, 2,....

With this “Infinite to Finite Range” inequality in hand we can proceed to
the main results, upper and lower bounds of the generalized Christoffel
functions; Nevai [18] was the first to use the method of reducing weights
over the real line to compact intervals in order to estimate the Christoffel
functions.

THEOREM 3.2. Let Q(x) be a Freud exponent with q, as defined in {2.3),

let 0< p< oo and pr> —1, then, for w,(x)=|x|"exp{— Q{x)), for every &,
O<e< i, there is a constani A= A(e), independent of x and n, such that

W, P(x) Ay p(WE3 x) 2 A(ga/n)(1 + (g, /n)/1x1Y" (Ix] <eBqn)
where B is the constant of Theorem 3.1.

TusoreM 3.3.  Let Q(x) be a Freud exponent with g, as defined in {2.3),
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let 0< p<oo and pr> —1, then, for w.(x)=|x|"exp(—Q(x)), there is a
0>0 and constant A', independent of x and n, such that

wP(x) Ay ,(WE5 ) S A'(g,/m)(1+ (g./m)/1x]Y" (Ix] <8g,).

We immediately obtain the following

CorOLLARY 3.4. Under the conditions of Theorems 3.2 and 3.3

wP(x) A, (W25 X)~ (qu/m)(L+(gu/m)/1x))7 (1x] < 0q.,).

Remark. We note that from the definition of Freud exponent, (ii) Q"
continuous is used for the lower bound but not for the upper bound while
(1i1) Q'(21)/Q' (1) > ¢, is used for the upper bound and not the lower.

The relation of g, to the polynomials p,(w,; x) (see Freud [5]) is seen in

THEOREM 3.5. Let Q(x) be a Freud exponent with q, as defined in (2.3)
and let r> —1; define w,(x) = |x|" exp{ — Q(x)}. Let x,,(w,) be the greatest
zero of p,(w,; x) and let a,(w,) be defined by (2.2). Then we have

xln(wr) ~n and an(Wr) ~gn-

1V. PrROOF OF THE “INFINITE TO FINITE RANGE” INEQUALITY

Following the method of Lubinsky [107] we use Cartan’s Lemma for the

Proof. (Theorem 3.1). If n(x)=0 the inequality is trivial. Let ne P,
1> H,, WE Can express

m
ax)=c[] (x—x); ¢#0,0<m<n x,.., x,,€ Cwith|x,| < - <|x,|.
i=1

Let g, be defined by (2.3). Determine j>0 such that for 1<i<},
x| <3q5,/2 and for j<i<m, |x]>3q,,/2. I |x|>Bq,,, |ul<q,, and
j<i<m, then

[x = xl/fu— x| < (L fxl/D D — ful/1x:0) < 3L+ (2/3)(1x1/g2))-
1e.
Jx = x.0/lu—x] < 5(1x]/g5,). (4.1)

If |x| > Bg,,, lu| <g,,, and 1 <i<j, then

lx —x{/lu— x| (%] + (3/2) gon)/ |t — x| S2xl/lu—xif. (42)
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Putting (4.1) and (4.2) together yields

|m(x)/m(u)l < f] 2L}/l —x,{) H (51x1/42,)

i=j+1
I T 1‘1
=275" ’(!X!'"/(%’”[’))LH lu—x[{ .
i=1 d
We shall now apply Cartan’s lemma (see, e.g, Baker [1, p. 174]) to
{TT/_, lu—x,|} to obtain

[m(x)/m(u)] < 57[48]x]/q5,1™

for |x| = Bq,,, 4| <q,,, and u¢ ¥ =R, where & is a set which can be
covered by intervals, the sum of whose iengths is at most ¢,,/8. Let .# =
(—Gams + §2n)\F, then # has Lebesgue measure at least (15/8) g,,. So for
ue M, |x| = Bq,,,

[n(x) w (0)l/ () wu)] < 57L48|x]/g2, "W (x)/w (1

Let ¢, =min{1, (3/8)"} and ue A* = M\ (—(3/8) 42,, +(3/8) g2,), then

[7(x) w )|/ Im(u) w ()] < 57148]x1/g5, 17w, (X)/ [wo(2,) €165,
<[2%/ey30qan/IX1 1" Ll wo(x)/ (@5 wol ) J-

But, by the maximality of ¢¥we{q,,), we have

n(x) wx))/|m(u) wu)] < [2%/e; [ gaa/ 12177,

ie., for |x| > Bg,,, and ue #*,

[m(x) w ()] < [2%/e, 1gaa/1x) 17~ m(e) w(u).
Therefore

() w, ()17 < [2%)e, 17 g1 17777 min, |m(u) w,(u)]%,
or

() w(x)|? < [2%/e, 171 q/ 111777 (1/g2,) L{ [ {u) w,(u)| Pdu

< [2%/e1 1710/ IX1 17 77 (1/g50) j n{u) w,(u)|Pdu.

—42n
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Whence

j\l . |m(x) w(x)|? dx 2%+ 1B~ =nptler[ p(n—r)— 1]~}
x| = Bqan

+qon
XJ Im(u) w(u)|Pdu.
— 4
Thus for B suitably large and n> n,

| m) w o< ALpie 7 Ton] ™ [ in) w )i die

— 4z

Now
e NN I [
R |x] < Bgap |x} = Bqan
thus
J, 1m0 w e < L (el (pm) p7T | ) w, (o)1
So we have

17 Cx) w00l ) < D1+ (e3/(pn)) p" 1w () (M 1, B, + g

choosing B possibly larger, since g¢,,<2q, (Freud [3, p.22]). Fix 6>0

then for 0 <0< p<

17 () w () ) < L1+ (c1/(8m)) p™3lm () WM Ly~ g+ By

By the continuity of ||, norms and the independence of the constants
upon p, the limit as p— o0 may be taken and the inequality holds for

O0<b<p<oo. |

V. PRrooFs OF THE UPPER AND LOWER BOUNDS
OF THE CHRISTOFFEL FUNCTIONS

First, we shall require a technical lemma

LeMMa 5.1. Let R, (x)=Y7-5 x*/k! then
(3/4) exp(x) S R,(x)< (5/4)exp(x)  (Ix]<n/5,n>12).
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Proof. From Taylor’s theorem, we have, for x| <cn,

lexp(x)— R, (x)] <(n!) ' max {exp(x)ix|"} <{nl) 'exp{cn)(cn)

Ix'<en

Applying Stirling’s approximation gives

lexp(x) — R, (x)i <exp((c+ 1} nj ",
in particular, for ¢=1/5,
[ —exp(-x) R (x) <(89)" 1}

We shall now construct the polynomials that will be used to
approximate w,(x) (as in Freud [3]).

LeMMA 5.2, Let Q(x) be a Freud exponent. g, be defined by (2.3), and
fix xeR. There exists a polynomial S,(x;t) such thar

(it S (1)e iy, (1) for each fixed x and some integer k =k{Q, B),

(i) S, (x:x)=wylx),

(i) C<S,(1)<(5:4) wolt) for |1 < By,
where B is the constant of Theorem 3.1.

Proof. Let ¥V, (1)= Q' (x)Nt--x)+ [con{(2¢7)1(1 - x)? for teR. Define
S =wolx) R, (—=V (1)) (it < By,
then (i) and (ii) follow directly. Now to prove (iii); For |7 < By,
V(1) <IQ'(x)! 2Bg,, + [con/(2g7)1 4B,
<¢,1Q(g.) 2Bg, +2B*cqn < 2B{c, + Beyl n.

Therefore, if k is a large enough positive integer, so that k5>
2B{¢, + ¢y B8], then, by Lemma 5.1,

Rinl = V(D)) ~exp( =V, (1)) (l1!< Bg,):
so that
(1) = wo(x) Real = V1))~ wofx) exp( = ¥, (1)),
and hence

S,(1) wy (1) ~exp{Q(1) = Q(x) — Q'(x){1 — x) = [¢yn2g7) 1t = x)]



224 WILLIAM C. BAULDRY

Since Q” is continuous, Q)= Q(x)+ Q'(x)(t —x)+ Q"()(t —x)*/2 for
some ¢ between ¢ and x, but, since Q is a Freud exponent,
10"(&)| < con/g?, and thus (i) holds. 1

We are now in a position to determine the lower bound.

Proof. (Theorem 3.2). Let p>0, fix r such that pr > —1, and let n > 12.
Then

hpwzix)= il | Jm(0)wp(e) de/[n() )7

ne Py

> inf [ (o) Pwe(n) di/Ta(x)1?

nePy_1 Y+ Bg,

> cong(x) inf [ a0) Sunt)) 71017 dl Tnl) Sn)17

nelPy_y — Bg,
+1
Zcwh(x) gt inf [R(tBg,,)1”|t|7"dt/[ R(x)]1”
RePpy_ v -1

Zeswt) gt il [ IR UR B, 1)

*ePry_1v—

so that

'ln,p(wf; X) > czwg(x) qﬁr+ 1ﬂ‘k’n,p(‘tl er[~1,+ 1](1) dt> x/Bqn)

Using Nevai [16, Theorem 6.3.25] we have, for |x| <eBg, (0<e<1),

An (W25 x) 2 Awl(x)Lq,/n 101+ B(q,/n)(1/ixD]”. |

Now we shall construct the polynomialis to estimate wy(x) for the upper
bound.

LeEmMA 53. Let xeR be fixed and let n>12. Then there exists a
polynomial S,(x; t) and 0> 0 such that for |x| < dq, and |t| < Bq,,
(1) Sn(t)ep[n/zj(t)a
(i)  S.(x;x)y=wg'(x),
(iii) 0<S,(1) wy(t)<5/4.
where B is the constant of Theorem 3.1 and q, is defined by (2.3).

Progf. Define S,(x; £)=wg Yx) R, (Q'{x)(t—x)) where m=[n/27] and

R, is defined in Lemma 5.1, then (i) and (ii) follow immediately. For

m
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|x}<dg, and |t} < Bg,, we have |1—x|<(B+3d)g,; now, since Q is
increasing

1Q"(x)(t = x)| < Q'(0g,)(B+0) q,= [0'(09,)/Q'(4,)]1 9,0"(g.){(B+ ).

Since ¢ is a Freud exponent
[Q'(04,)/Q'(q,)1<{Q(g.,27Y 0 (g )< ep k.
Thus we can take ¢ >0 so small that
1Q'(x)(t —x)| < cg *n(B+ ) <n/20 <m/s,
therefore, by Lemma 5.1 and the convexity of 0,
S,(1) < ewy Hx) exp{(Q'(x)(t — x)} S cexp{Q(1)} = cwy (1), §
Let us proceed to the

Proof (Theorem 3.3). As before let p>0, fix » such that pr> —1, and
let > 12. Then

huplwgix)=inf | in(o)l7w2(0) di/T(x))7

ne®,

< inf [ (o) dij L)),

neP,_ 1Y~ By,

which, applying Lemma 5.3, is

e ot [ IRG) 8,00 wolD) 17U ERG) ()17

RePryn1 Y — By,

<cowbC)_inf [T RO TR

RePry23 ¥ — Bgy
We apply the same change of variables as in the derivation of the lower

bound to obtain

+1
<cywp(r) gyt inf [ IR*()! 7|l 7du/ [R*(x/Bg,)]"

R*e P14 1
so that
Ao pWE3 X) < e3WE(X) @2 Ay (1117721~ 1 e 19(28) 425 X/ Bg,).
Once more using Nevai [16, Theorem 6.3.25] we have, for |x| <dBg,,

Ay oWl X) S A'WH(X)Lg,/m1TL + Blg,/my(11x])17. B
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VI. CONNECTIONS TO THE ORTHONORMAL POLYNOMIALS p,(w,; Xx)

While Freud originally used the property that ¢32Q’(q,,) maximized
xQ’(x), there are other significant relations concerning g,,.

LemMMA 6.8, Let x,,(w,) denote the greatest zero of the orthonormal
polynomial, p,(w,; x), and q, be defined by (2.3); then

limsup x,,(w,)/q, < const.
n— oo

Proof. From a well-known result of Chebyshev (see, e.g, Szegd [21,
p. 187]) we have

j xm?(x) w,(x) dx/JR 72 (x) w.(x) dx].

xln(wr) = max [
R

nelP,

According to Theorem 3.1

j |x|72(x) w, (x) dx < [1+cp?+1] Jw" x| 72(x) w,(x) dx

R — Bgn

or

+ By
<2Al+ep™* 1B, [ wHx)w(x)d,

— Bqy

and the result is seen to hold. |

LEMMA 6.2, Let r> —1. Then

DN () =1+ 14,7 [ px) pa () Q') w,(6)
4, =sin’*(nn/2).

Remark. For Q(x)=x|? Lemma 6.2 was proven for r>0 and >0 in
Freud [6] and for > —1 and #>1 in Nevai [18].

Proof. First integrate directly

|7 2 sy w ) dx = max ) p () i) dx

=<(:.,Om (n(yn/yn—l) pn-l(x)"f’nnfl(x)) pn—l('x) W,(X) dx:n(yn/yh_ ()
(6.1)

where 7, _,(x)e P, _,, the last equality holding by virtue of orthogonality.
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Now integrate by parts

|7 ) sty wim) dx= =7 p (0 (6) w, ()Y dx

— o0

=[P Pui0) Q) () dx

[T P i) A (62)

Since w,.(x) is an even weight, p, is an even/odd peclynomial as n is
even/odd, resp., therefore

|7 2l P (0 X w0 = (/1) 4

Combining (6.1) and (6.2), the result follows. §

LemMa 6.3. Let r> —1, n>ny, and a,(w,)=7y,_(w,)/v.(w,), then

Ag,<a,(w,),

where A is an absolute constant.

Proof. From Lemma 6.2 we have
2209 209, = (k1 4,) 7 [T () paa(0) @160 w, ()

Since Q is a Freud exponent, for x>0
Q'(x)=0Q'(q,) exp{log(Q'(x)) —log(Q'(,))}
otg)e{[ @ wyew

<Q'(g.) exp {j (c/t) dz} = 0'(¢,)Ix/g,°

with ¢ being the constant of (2.1)(iv), whereupon

V8w S sln47,) Q@) [ 1% o (O] 1Ig 1w, ) dix.

640/46/3-2
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We now apply Theorem 3.1 to obtain

<ealr ) Q@) [ 1) pa 1060 I/l i) i,

so that

10 09 < ean ™' Qa,) [ 120) P (0] ()

—Byy

ie.,
Scsnng’(Qn) =¢3/q,.

The last equality foilows from the definition of ¢,. 1
Proof (Theorem 3.5). The inequality

constg, <a, < max a;<x,<2 max a;<2x,,<constg,

I<jsn—-1 1<jsn—1

follows from (Freud [6, Theorem 17])

max @;<x,<2 max g
l<jsn—1 1<j<n—1

and Lemmas 6.1 and 6.3. Since ¢, is an increasing function of »n and
1<4g,,/9,<2 (Freud [3, p.22]) the Theorem holds.

Remark. When Q is an even polynomial of degree 2m then g,~n'/?"

and given that 4,(w,)=a,(w,)/(n"*") has a limit, it is an easy calculation
to find the value. Following the method of Freud [4] we integrate
[ 2i(x) p_s(x) w.(x) dx in two ways (as in Lemma 6.2) and we arrive at
the recurrence relation for a,(w,)

& + o
n+rsin’(nn/2)=2a, Y dekj x%*=1p (%) p,_1(x) w(x)dx
k=1 -

o0

where Q(x)=Y d,,x%*; now, noting that the “order” of each of the
integrals is ~Cy, _; ,a2*~*' (C,; being the binominal coefficient), we find

lim a,(w,)/(n"?") = (2m dopy Copy_ 1 ) 1"
which is consistent with the Freud conjecture [4] (recently proven by A.

Magnus [11] for the case Q(x)=x>", also see Magnus [12], where
Freud’s conjecture was discussed for Q(x)=|x|", r>1).
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